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The floating zone method is the most widespread crucible-free method of purifying mater- 
ials and growing monocrystals. The mechanics of the material purification process is that 
melting of a certain interior section of the vertical cylindrical ingot rod is performed in 
the initial stage, while the melted zone is displaced slowly along the rod in the second 
stage. The monocrystal growing process is similar to the purification process except that in 
the initial stage a tip rather than an interior section of the purified rod is melting, and 
is then set in contact with the monocrystalline "seed" of this substance. Three aspects of 
this problem can be extracted conditionally for a theoretical study: the melt stability, the 
hydrodynamic phenomena in the floating zone, and the heat transfer in the system in the 
absence of convection in the melt. When investigating the first two directions the authors 
ordinarily assume that the temperature distribution and the location of the melt boundary are 
known a priori [1-3]. Therefore, the geometric characteristics of the melted zone and the 
temperature distribution in the specimen must be known for a correct formulation of the 
hydrodynamic problems and the stability problem. 

Sufficiently many diverse methods are used at this time to solve the Stefan problem that 
occurs. But the specifics of zone melting is that the displacement of the melted zone is 
extremely slow (on the order of 1 cm/h) and it can be neglected. In this case the volume of 
the calculations is successfully reduced substantially since the problem with a free boundary 
goes over into a boundary-value problem for the Laplace equation in a known domain after the 
Kirchhoff transformation. Such an approach to the solution of the stationary Stefan problem 
was first applied in [4], where the temperature distribution and the shape of the phase 
transition front were determined numerically under the following assumptions: I) the system 
is in the steady state, the melt boundaries are fixed, the temperature depends only on two 
variables (the radius and longitudinal coordinate); 2) there is no convection in the melt; 3) 
the rod is in a vacuum; 4) the physical properties of each phase are independent of the 
temperature; 5) the free surface of the liquid phase is cylindrical; 6) both rod tips are 
heat-insulated. 

In this paper the axisymmetric stationary problem of finding the temperature distribution 
and the location of the phase interface is investigated numerically under assumptions i-4. 
As compared with [4], the additional difficulty is associated with the fact that the lateral 
surface of the liquid phase is considered free and depends on capillary forces [2]. 

A new boundary condition simulating the attachment of the specimen to the heat-conduc- 
ting rod is given at the ingot endfaces. In particular, it permits reduction in the voh~e 
of the calculations if fictitious boundaries are introduced and an internal shorter ingot 
section attached to rods of the same material is considered. 

The following results are obtained: the critical powers of the external heat sources are 
obtained, at which the melt domain is formed, a liquid bridge occurs, the phase transition 
fronts became practically planar; the structure of the phase interfaces is studied as a 
function of the power and the method of focusing the heat source. The strong dependence of 
the phase interfaces on the problem parameters is exposed in the case of small melted zone 
sizes. 

I. Formulation of the Problem. An axisymmetric specimen ~ = {(r, z)l O < r < g ( z ) ,  d l < Z  
o f  l e n g t h  2 = d 2 - d t i s  c o n s i d e r e d  i n  w h i c h  h a s  p h a s e s  a r e  p r e s e n t :  l i q u i d  ~+,  where  

t h e  t e m p e r a t u r e  T i s  a b o v e  t h e  m e l t i n g  p o i n t  T . ,  a n d  t h e  s o l i d  ~ - ,  w h e r e  T < T . .  I t  i s  
a s s u m e d  t h a t  T ( r ,  z)  d e p e n d s  o n l y  on  two v a r i a b l e s ,  t h e  r a d i u s  r a n d  t h e  c o o r d i n a t e  z d i r e c t e d  
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TABLE I 

Sketch 
H 

numbor 

t 0,01 
2 0,01 
3 1 
4 1 
5 0,01 
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7 t 
8 0,01 
9 0,01 

t0 0,01 
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O0 
" 

o o 
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0 
0 
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0 
0 

i 
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1 
1 
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1 
1 
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I 

D, 
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--20 
--20 
--20 
--35 
--20 
--20 
--20 
--20 
--20 

D2 P 

20 0,t08--0,t80 
20 0,08--0,t8 
20 4,2--t4,0 
20 2,0--~4,0 

5 0,12 
20 0--0,24 
20 0--15 
20 0,1t 
20 0, t t  
20 0 , t i  

D~ 

2,0 
0,5 
2,0 
0,5 
2,0 

0,5--2,0 
0,5--2,0 
0,5--2,0 

2,0 
2,0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
--0,2--0,2 

along the axis of symmetry and satisfies the Laplace equation 

AT = Oin (o• . (i.I) 

in each phase. On the specimen endfaces we set 

xOT/On -- --~TS/" a~ z = d~, i --  1, 2. ( 1 . 2 )  

C o n d i t i o n  ( 1 . 2 )  r e s u l t e d  f r o m  t h e  f o l l o w i n g  r e a s o n i n g .  I n  e x p e r i m e n t s ,  s a y ,  a s i l i c o n  
s p e c i m e n  i s  f a s t e n e d  t o  a c o p p e r  r o d .  S i n c e  c o p p e r  i s  a good  h e a t  c o n d u c t o r ,  t h e  t e m p e r a t u r e  
d i s t r i b u t i o n  i n  t h e  c o p p e r  r o d  c a n  be  c o n s i d e r e d  u n i f o r m  a n d  s a t i s f y i n g  t h e  p r o b l e m  [5] 

Ro'~Tz~ = 2e~'~oTN, z > d.2, Tz ---- 0, z = + o o ,  iF = T2, z = 82, ( 1 . 3 )  

which has the exact solution 

T = T  2 I + t '87aT~(z__d2)  z > d , .  ( 1 . 4 )  

Since the temperature and heat flux are continuous on the material interface from physi- 
cal considerations: T T~- Te, • ~-~ OT/On, z---do, then for z = d z we have (1.2) with 

= Vo.se~o/R0. Condition (1.2) is obtained analogously for z = d I. 

The radiation condition in a vacuum according to the Stefan-Boltzmann law 

• = - - e ( o T  4 - -  q(z)) for r = g(z)~ ( 1 . 5 )  

i s  s a t i s f i e d  on  t h e  l a t e r a l  s u r f a c e ,  w h e r e  ~,  e,  a a r e  t h e  h e a t  c o n d u c t i o n ,  e m i s s i v i t y ,  a n d  
B o l t z m a n n  c o e f f i c i e n t s ,  r e s p e c t i v e l y ,  q ( z )  i s  t h e  e x t e r n a l  h e a t  f l u x ,  a u d  n i s  t h e  u n i t  
e x t e r n a l  n o r m a l  t o  t h e  l a t e r a l  s u r f a c e .  

On t h e  a x i s  o f  s y m m e t r y  we s e t  

T r = 0 for r = O. (i.6) 

Thetemperature on the phase interface equals the melting point 

T= T, on y (1.7) 

and the Stefan condition is satisfied, which takes the form of equality of the heat fluxes in 
the stationary case 

zzOTz/Onl = • h on ? (I. 8) 

(n I is the unit normal to the phase transition surface). 

The heat-conduction coefficient is assumed a piecewise-constant function of the tempera- 
ture 

formation 

•  • T < T . ,  
t• T > T . .  

2. Reduction to a Problem for the Laplace Equation. 

T 

U (T) = 

T, 

Let us perform the Kirchhoff trans- 

T-- T, 
• (s)  d~  = ~ ,  (2.1) 
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Fig. 3 Fig. 4 

where c(T) = I for T < T, and c(T) = C ~ ~s/m~ for T > T, and the substitution 

x = r/g(z), y : Z/Ro ( 2 . 2 )  

(R 0 = g(dl) is the radius of the ingot). The curvilinear domain w here goes over into the 
rectangle ~ = (0, i) x (DI, Dz). The dimensionless reduced temperature U(x, y) satisfies an 
elliptical equation in the domain 

anUxx  + alzUxv + Uvy + aaU x = 0 B Q~ ( 2 . 3 )  

on the boundaries 

U v = v ( c U q -  ~)~/2 for g - D 1 ;  ( 2 . 4 )  

Uy --  --~'(cU 4- 1) 5/2 for y = D2; ( 2 . 5 )  

b~U~ + b2Uy = - -H(cU -~- j)4 ~_ Q for x - 1; 

l 
al = 7"ff,. + x 

F o u r  d i m e n s i o n l e s s  p a r a m e t e r s  

U x -= 0 for X -=: O; 

( a'~ 2x~-, a11=~+ xa] ,  a~2=-- 

2 (G') zG "~- GG", bl = V'i'+G (G')2' b2 = G' 
]/~--F (G') 2 

(2.6) 

(2.7) 

(2.S) 

and two functions 

H = eeBoTS,/x~ - - B l o t  number ,  

v = a Ts/2 / • V"o .~- - -~  N I / O ~ H ,  C •215 L = I / R o , .  

( 2 . 9 )  

G (y) = g (Roy)/R o (gives the la teral  surface),  Q (y) = 

eR~ (ROY) (defines the external  heat  flux). 
• 

( 2 . 1 0 )  

are in the problem (2.3)-(2.7). 

The solution U of the elliptical equation with smooth coefficients has continuous first 
derivatives everywhere within the domain ~, consequently, the Stefan condition (1.8), which 
is equivalent to the continuity of the first derivatives of the function U in F C s is 
satisfied automatically. The equality of the temperature on the phase transition boundary to 
the melting point (1.7) permits finding the boundary F as the zeroth level line of the func- 
tion U(x, y). 
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4 ' = 0  "/ 2 

Fig. 5 

3. Determination of the Lateral Surface. The shape of the free lateral melt surface 
G(y) in parametric form is found from the condition of capillary equilibrium in terms of the 
boundary angle ~ and the boundary of the melted zones Da, D 4 as follows [2]: G(y) = 1 for 
Y ~ [01, Da] o [ D 4 , D 2 ]  , and for y e (D a, D4) as the solution of the system 

0 

~+b~o,~ d~ 

D ,  = g ( 2 a -  s s G(0, s  1(0, s  X) 

f o r  s _< 0 < 2~r - ~,  when  .[(0, s V t  q- b ~ +  2 b c o s 0 ;  b = - - t g ~ / ( s i n s 1 6 3  

4.: N u m e r i c a l  S o l u t i o n  o f  t h e  P r o b l e m  ( 2 . 3 ) - ( 2 . 7 ) .  The b u i l d - u p  m e t h o d  i s  u s e d  f o r  t h e  
n u m e r i c a l  s o l u t i o n ,  n a m e l y :  an  a u x i l i a r y  p r o b l e m  i s  c o n s i d e r e d  f o r  an  e q u a t i o n  o f  p a r a b o l i c  
t y p e  

vt = allV~x + av~v. w + vvv + a~vx in QX(O, co); 

V t -~ V v - -  V(CV ~-  ,[)5/3 for y ~-~ D1; 

V t = - - V y  - -  V(CV + 1) 5/2 for " y ----- D2; 

vt = - - b l v ~  - -  b.,vv - -  H ( c v  -}- 1)* + Q for x ---- t ;  

v ~ =  0 for x = 0; 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

= 0 as t ~ ~, then 

(4.7) 

v - - 0  for t = 0 .  

Here  an ,  a12 , a l ,  bl, b 2 , H , w , c , Q  a r e  d e t e r m i n e d  f r o m  ( 2 . 8 ) - ( 2 . 1 0 ) .  I f  l i ra  v t 

U ( x ,  y ) =  lira v (x, y, t) 
~->oo 

is a solution of the problem (2.3)-(2.7). 

A locally one-dimensional second-order difference scheme of approximation in the spatial 
variables is used to solve the problem (4.1)-(4.6) [6, p. 413]: 

(~-- v(n))/T = ~y~ + f in ~; (4.8) 

(~(~+1) _ ~ ) /~  = ~ . ~ + "  + / ~ ~ (I (1/2) ~a J~) + a ~("m 12 ~ 1 ~ ))" (4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

The boundary conditions are also second-order approximations 

(~--v(n))l~=~7--~(c~(n)+ I) ~ for v=DI; 

(-~__ v ( ' ) ) / T  = __ v ~ ) _ _  v (cu  O0 + :1) ~/'2 for Y ---- D2; 
Y 

(~(~+'- ~(">)/~ = - b # s  @ ~ ' -  H ( ~  ~ + 1) ~ + O fo~ x = 1; 
Y 

v~ +I)--0 for x=0; 

v =  0 for t = 0 .  
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Remark i. Introduction of the time derivative v t in the nonlinear boundary conditions 
(4.2)-(4~ permitted us to obtain the second-order approximations in the spatial variables 
easily in their difference analog (4.10)-(4.12). 

5. Description of Program Operation. I) The constants Di, i = I .... , 5, C, H, u, ~, P 
are given; 2) the lateral surface G(y) is determined by means of ~, D 3, D4; 3) the coeffi- 
cients of the equation are found; 4) the external heat flux Q(y) is selected such �9 

tQ*,IyI<D~, (5.1) 
Q@C(y)=L0, lyl>o~; 

then the power is calculated from the formula 

P = 2Q, D~, ( 5 . 2 )  

the relationships (5.1) and (5.2) define the function Q(y) as a function of P and Ds; 5) the 
problem (4.8)-(4.14) is solved by build-up: U = v (n) if maxlv(n)_v(n-z)I<10-~ ; 6) on the 

ij 
basis of linear interpolation the level lines of U(x, y) = 0 are found that agree with the 
phase interfaces�9 

Remark 2. To determine the lateral surface G(y) by means of the formulas described in 
Sec. 3, three parameters must be known: ~, D3, D 4. The boundary angle ~ is considered known 
for this process while the points D 3 and D 4 are the boundaries of the melted zone by the 
physical meaning, i.e., not only the reduced temperature U but also the points D 3 and D 4 are 
desired in the problem (2.3)-(2.7). Consequently, additional calculations are needed that 
are constructed in such a manner: firstly we set D(~ ) =--D~ ) = R0, satisfying steps 2-6, 

the first approximation of the phase interface O(~ ) is found; continuing this process the 
sequence O(~) is obtained. If max[ (k) (~--I) 8 , 4 D~ --Di I<0,01, then it is considered that U <k), D (k) O <h) 

~=3,4 
i s  a s o l u t i o n  o f  p r o b l e m  ( 2 . 3 ) - ( 2 . 7 ) .  

6- Results of a Computation. Displayed in Figs. 1-5 and 9-10 are sections of the radial 
rod section Izl < 3.5R 0 on which the dash-dot line corresponds to z = O, the dashes to Izl = 
D s and the solid line to the phase interface F. The set of values of parameters for Figs. i- 
i0 are given in the table. 
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Presented in Figs. 1-4 are the characteristic profiles of the phase interfaces in the 
case of heat-insulated tips as a function of the heat source power. These results are in 
good agreement with the computations [4]. 

Shown in Fig. 5 is the influence of the heat flux through the ingot endfaces on the melt 
geometry as the floating zone moves to one of the ends; N = i simulates the case when the 
final short section is considered in an infinitely long ingot. As should have been expected, 
the melted zone here has a symmetric shape while the temperature distribution in the solid 
phased differs slightly (by less than 0.01) from that obtained from the one-dimensional model 
[5] 

[ 1 +  ]/'l.8H (y--D~)]-2/3--1, Y~D4, 
U D ( y ) =  0, D~<y<D4,  

[1 - -  ] / ' i ,8H (y - -  Da)] -~/a - -  1, y < D a .  ( 6 . 1 )  

Represented in Figs. 6 and 7 is the dependence of the melted zone halfwidth on the 
lateral surface D 4 on the heat source power P for different Blot numbers. The dashed line 
corresponds to narrow heat flux (D s = 0.5), the solid line to a broader (D S - 2), and the 
dash-dot to the dependence 

P = ~o-o-ff-H + 2HDr ( 6 . 2 )  

o b t a i n e d  f rom the  o n e - d i m e n s i o n a l  model  [ 5 ] .  

Shown i n  F i g .  8 i s  t he  d i s t r i b u t i o n  o f  t he  r e d u c e d  t e m p e r a t u r e  U on t h e  spec imen  s u r f a c e  
x = 1 ( t h e  s o l i d  l i n e  i s  D s ~ 2, t he  da shes  to  D s = 0 . 5 ,  and the  d a s h - d o t s  t o  t he  t e m p e r a t u r e  
d i s t r i b u t i o n  ( 6 . 1 )  f rom the  o n e - d i m e n s i o n a l  model  [5] f o r  D 3 = D 4 = 0 ) .  

I t  i s  s e e n  f rom F i g s .  6-8  t h a t  f o r  s m a l l  B i o t  numbers  t he  dependence  ( 6 . 2 )  p e r m i t s  a 
s u f f i c i e n t l y  good. e s t i m a t i o n  o f  t h e  power needed  to  form the  f l o a t i n g  zone ,  and t he  t empera -  
t u r e  d i s t r i b u t i o n  f rom ( 6 . 1 ) .  Le t  us  n o t e  t h a t  f o r  s m a l l  m e l t e d  z o n e s ,  s m a l l  f l u c t u a t i o n s  i n  
the  power P r e s u l t  i n  s i g n i f i c a n t  changes  i n  D 4, as  f o l l o w s  f rom F i g s .  6 and 7. I n  t h i s  c a s e  
the  phase  i n t e r f a c e  depends  s t r o n g l y  on o t h e r  p a r a m e t e r s  o f  t he  p r o b l e m  a l s o ,  f o r  i n s t a n c e ,  
the  r e l a t i o n s h i p s  b e t w e e n  t h e  h e a t - c o n d u c t i o n  c o e f f i c i e n t s  o f  t he  l i q u i d  and s o l i d  p h a s e s  C 
(F ig .  9 ) ,  o r  t he  shapes  o f  t h e  f r e e  m e l t  s u r f a c e s  ( F i g .  10) .  Such a dependence  o f  t he  m e l t  
s i z e  on t h e  p r o b l e m  d a t a  i s  e x p l a i n e d  by  the  f a c t  t h a t  v a r i a t i o n  o f  t he  p a r a m e t e r s  o f  the  
p rob lem r e s u l t  i n  s m a l l  t e m p e r a t u r e  f l u c t u a t i o n s ,  and s i n c e  t h e  t e m p e r a t u r e  g r a d i e n t  n e a r  the  
phase  t r a n s i t i o n  b o u n d a r y  i s  s m a l l  ( F i g .  8 ) ,  t h e n  t he  s h i f t  o f  t he  i s o l i n e  U = 0 o r ,  e q u i v a -  
l e n t l y ,  t he  d i s p l a c e m e n t  o f  t h e  phase  i n t e r f a c e  t u r n s  o u t  t o  be p e r c e p t i b l e .  

A s s o c i a t e d  w i t h  t h i s  a r e  d i f f i c u l t i e s ,  i n  p r i n c i p l e ,  i n  t h e  n u m e r i c a l  d e t e r m i n a t i o n  o f  
the  m e l t  b o u n d a r i e s  s i n c e  t he  p r o c e s s  c o n v e r g e s  s l o w l y  and l a r g e  e x p e n d i t u r e s  o f  machine  t ime 
a re  r e q u i r e d .  The r e s u l t s  p r e s e n t e d  i n  F i g s .  1-10 a r e  o b t a i n e d  on t h e  e l e c t r o n i c  compu te r s  
ES 1052, 1061 on a 11 • 41 p o i n t  mesh f o r  r = 0 . 1 .  The c o m p u t a t i o n s  c a r r i e d  o u t  on f i n e r  
meshes showed t h a t  t h e  q u a l i t a t i v e  p r o p e r t i e s  o f  t he  s o l u t i o n s  a r e  r e f l e c t e d  t r u l y .  

I n  c o n c l u s i o n ,  we n o t e  t he  f o l l o w i n g :  1) i f  t he  m e l t e d  zone  i s  s u f f i c i e n t l y  f a r  f rom the  
i n g o t  e n d f a c e s ,  t h e n  by c o n s i d e r i n g  c o n s i d e r a b l y  s h o r t e r  s e c t i o n s  o f  t he  r o d  w i t h  t he  b o u n d a r y  
c o n d i t i o n s  ( 2 . 4 )  and ( 2 . 5 )  f o r  v = ~0~8H, a good a p p r o x i m a t i o n  can  be o b t a i n e d  f o r  t he  
t e m p e r a t u r e  d i s t r i b u t i o n  on t h i s  s e c t i o n ;  2) f o r  s m a l l  v a l u e s  o f  t he  m e l t e d  zone w i d t h  the  
m e l t  g e o m e t r y  depends  s t r o n g l y  on t he  p a r a m e t e r s  o f  t he  p rob l em;  3) f o r  l a r g e  v a l u e s  o f  D s the  
p r o c e s s  can  be i n  t h e  domain o f  a s t r o n g  dependence  o f  t he  m e l t  g e o m e t r y  on t he  p rob lem 
p a r a m e t e r s  even  f o r  a m e l t e d  zone l e n g t h  o f  D 4 - - D 3 ~ 2 ~  on t h e  i n g o t  s u r f a c e .  

The a u t h o r  i s  g r a t e f u l  t o  V. V. Pukhnachev  and L. G. B a d r a t i n o v a  f o r  f o r m u l a t i n g  t he  
p rob lem and d i s c u s s i n g  t he  r e s u l t s .  

I. 

. 
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STEADY-STATE CONFIGURATIONS OF THE DEFORMATION REGION AND 

THE FORCE BALANCE IN THE DRAWING OF AN OPTICAL FIBER 

V. N. Vasil'ev and V. D. Naumchik UDC 532.522 + 681.7.068.4 

Fiber light guides are thin glass fibers formed from a liquid mass drawn through a die 
or pulled from a cylindrical semifinished product as a result of its symmetrical local heating 
to about 2000~ Passing through air, the quartz glass melt forms a liquid stream with a 
free surface whose form is determined by the equilibrium between the forces of internal 
friction, surface tension, gravity, friction against the air, the force of acceleration on 
the glass, and the shearing force. The stream cools as it descends and, after application of 
the first polymer coating, the cold fiber enters a rotating drum. The drum maintains tension 
in the stream, forcing it to become thinner as cooling proceeds. The behavior of the molten 
stream of quartz glass can be examined on the basis of the gasdynamic equations of an incom- 
pressible Newtonian fluid and the energy equations, since the equation of motion contains the 
absolute viscosity - which is a function of temperature. Recent experimental findings show 
that shear flow occurs during the drawing of optical fibers [I]. Until now, there has been 
no reliable theory for calculation of the two-dimensional distribution of temperature and 
velocity in a jet of a high-viscosity liquid with a free surface. Thus, it is usually the 
practice to make several assumptions (examined in more detail in [2]) which make it possible 
to reduce the problem to a unidimensional problem. However, no detailed analysis of the 
drawing of optical fibers has been made even within the framework of unidimensional models. 
Here, the approaches have been either to solve only the hydrodynamic problem and assume that 
the viscosity distribution along the deformation is simply prescribed or to introduce an 
excessively simplified energy equation which does not adequately describe the process of heat 
transfer during fiber drawing. 

Here, we examine the main results of a study of the formation of optical fibers obtained 
on the basis of a quasiunidimensional mathematical model whose basis principles were described 
in [3]. We will also analyze the balance of the forces acting in the deformation region 
during the formation of a fiber by the bead method. 

i. The process of the formation of an optical fiber is examined in the simple uniaxial 
tension of a Newtonian fluid with variable viscosity determined by the temperature distribu- 
tion. The temperature distribution is found from the energy equation. In formulating the 
system of equations describing the dynamics of fiber drawing, it was assumed that except for 
viscosity, the physical properties of the liquid are constant, the liquid is isotropic, and 
its motion is axisymmetric. 

The equations of continuity 

aR aR Rav. (i. I) 
a~ --~a7 q- 2 ax' 
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